新闻标题:西安临潼区高考复读全日制一般多久能毕业
西安高考复读全日制是西安高考复读全日制学校的重点专业,西安市知名的高考复读全日制培训机构,教育培训知名品牌,西安高考复读全日制学校师资力量雄厚,全国各大城市均设有分校,学校欢迎你的加入。
1、专业的教师团队,掌握前沿的教学方法 2、教学经验丰富,善于激发学生的潜能 3、善于带动学员融入情景体验式课堂
西安高考复读全日制学校分布西安市新城区,碑林区,莲湖区,灞桥区,未央区,雁塔区,阎良区,临潼区,长安区,高陵区,鄠邑区,蓝田县,周至县等地,是西安市极具影响力的高考复读全日制培训机构。
其次、借助多媒体技术实现复杂问题的简单转化,其实初中学生数学学习困难与老师的讲授密切相关,数学教师可以借助一定的教学器具实现复杂问题的简单转化。例如:在讲解直线、线段与射线的区别时,可以制作一个形象性的有教学针对意义的数学教学课件,通过鼠标的灵活控制实现线段到射线到直线的自由转变,学生在记忆这几种图形时明白了三者之间的区别与联系。
爱德华德波诺指出:纵向思维是在挖深同一个洞,横向思维是在试着在别处引导人们求新求异,不断产生出新的创意,有利于思维创新和能力的培养,这一训练离不开教材这个例子,整合教材内容,既是知识的归纳,又是能力的训练,在整合的基础上加以引申,体现了学生从“。”走向“?”的过程,这是一个对“旧成分的新组合”。比如我在教学长方形和正方形周长的时候,将周长的认识和周长的计算这两部分内容进行了整合,孩子们在学完什么是周长以后,思考周长怎么计算,激发了学生思维的火花,产生了新的想法,新的问题。
三、课外实践,拓展新知
答题格式:强调了+对象+特性
数学思想是数学的灵魂,数学方法是数学的行为。运用数学方法解决问题的过程就是感性认识不断积累的过程,当这种量的积累达到一定程序时就产生了质的飞跃,从而上升为数学思想。因此,在教学的过程中,教师一定要向学生渗透数学思想和解题方法,让他们在学习了一个知识点或做了一道题后,要认真思考一下,用到了哪些数学思想与方法。正确运用数学思想与方法学习数学或解题,有利于对知识进行比较归类。只有这样,才能把所学知识学得系统,学得灵活,才能把所学的知识真正纳入到学生的知识结构中去,变成自己的财富。
1、注意学生学习兴趣的培养,激发学生学习热情
教学设计必须要贴近学生实际
2数学教学方法制定明确目标,贯穿各个细节
多维分析与综合设计是制定教学目标两个很重要的方面,两者缺一不可。多维分析关注了课程目标的多元性与均衡性,综合设计保证了教学目标的准确性与全面性。这样有利于实现不同层面、不同维度的教学目标前后连贯、动态整合、形成合力。所以,初中数学课堂教学目标设计不仅要进行多维分析,还要进行综合设计。例如:在制定《旋转》一课的教学目标前,我们要从宏观的角度把握它属于运动几何的范畴,知道《数学课程标准》的要求和单元教学目标,准确把握学生特点,结合已学习过的平移、平面直角坐标系。然后从微观上进行分析,如知识与技能,过程与方法,情感态度与价值观等维度。注重创新目标意识,为课堂教学开拓新空间
在引言、绪论教学中引入数学游戏。对于教科书的第一节课,每个学期的开始,每一章的开始,一般都可以安排一节绪论课。例如七巧板游戏:它是我们祖先运用面积的分割和拼补的方法,以及有相同组成成分的平面图形等积的原理研究并创造出来的。七巧板作为一种平面拼图游戏,它还可用于儿童启蒙教育,可以增强学生的注意力,提高识别图形的能力,因此它可作为平面图形一课的引例。再比如人教版七年级上册第二章中的数字1与字母x对话的游戏可作为求代数式的值一课的引例。在新概念的教学中引入数学游戏。比如在研究\"正方体的展开图\"中,可以通过将一个正方形沿着它的几条棱剪开后,展开成一个平面图形,多剪几个,然后观察一共可以剪出几个不同形式的正方体的平面展开图,从而得出平面展开图的有关概念。中考题中融入数学游戏。在近两年的中考数学试题中出现了以游戏为背景材料的题目,这类题目将数学问题置于常见的游戏中,使问题更具有趣味性和挑战性,让学生在游戏活动中解决数学问题,并对数学产生积极的情感体验。
例如,扑克游戏,我们来找几个同学来做个游戏,一个同学背对着一个同学,让第一个同学来依次的按照以下加步骤来具体的操作。首先,让他分发左面还有中间以及右边的三堆扑克牌,还有这是有要求的,没一堆至少要发两张,并且还有就是让每一堆分发的张数一定是相同的。其次,我们从左边的一堆中,拿出2张,之后放入到中间一堆中。再次,从右边的一堆扑克中拿出一张,之后放在中间的一堆中,第四,在左边的一堆中有几张扑克牌,就从中间一堆拿几张牌放入左边一堆。这个时候小明准确的说出了中间一堆的扑克牌的张数。你认为中间的一堆扑克牌中有多少张扑克呢。我们来分析一下,这道题是把列代数还有及代数等一些知识中,融入了扑克的游戏,让我们的学生运用数学的知识来进行分析问题,可激发学生学习数学的兴趣。设第一步后每堆牌的张数是x,则第四步后中间一堆牌的张数是x+2+1-(x-2)=5。
时间顺序、空间顺序、逻辑顺序
(逻辑顺序六种形式:1 一般—个别 2 现象—本质 3 原因—结果 4 概括—具体 5 部分—整体 6 主要—次要
概念的拓展宜实在有效
故事游戏导入法
这里有一个问题要问大家,什么问题呢?”学生立刻会意,很快说出一共有多少个玉米棒,然后由学生列出算式。教师继续说:“忽然有一天,有一只拿着香蕉的小猴子路过这里,它扔掉香蕉,偷偷地掰掉了一个,然后又很快地溜走了。(出示猴子偷玉米的过程。)第二天,王爷爷来了一看,啊!王爷爷他说什么了呢?”学生很快说:“玉米怎么少了一个!”“那现在是多少玉米呢?”于是学生之间七嘴八舌,议论纷纷。教师接着问:“该如何列算式算出结果呢?”于是学生有的陷入苦思,有的比比划划,有的在两两交谈议论。学生很快地列出了算式。这样的教学,入情入理,情境与数学问题相映相融,学生学习起来心情舒畅,兴趣盎然,整个学习的过程也顺理成章,水到渠成。教师所创设的情境问题,为学生创造了异想天开的机会。
设计探究性作业,鼓励学生自主探究 和质疑。
4
西安高考复读全日制学校成就你的梦想之旅。学高考复读全日制就来西安高考复读全日制学校
培训咨询电话:点击左侧离线宝免费咨询